
README

October 17, 2020

[1]: import pandas as pd
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
import os, json, requests, pickle
from scipy.stats import skew
from shapely.geometry import Point,Polygon,MultiPoint,MultiPolygon
from scipy.stats import ttest_ind, f_oneway, lognorm, levy, skew, chisquare
from sklearn.preprocessing import normalize, scale
from tabulate import tabulate #for printing pretty tables
from shapely.geometry import Point,Polygon,MultiPoint
%matplotlib inline

import warnings
warnings.filterwarnings('ignore')

1 NYC Green Taxi
Welcome! In this notebook, we will explore data from the New York City Green Taxi, the city’s
platform which uploads monthly datasets detailing Green Taxis’ trips in and around the city. I
have selected to work with the December 2018. Briefly, this study consists of some Explolatory
Data Analysis (EDA) and model building that would predict the percentage tip a driver would
expect on each trip. The below code chunk loads the dataset (with a local path) and prints out its
dimensions (number of rows and columns). Some of the libraries worth pointing out include but
are not limited to:

shapely

scikitlearn

Tabulate

1.1 Warm Up Questions
The few following code chunks will explore different questions one could ask about the dataset.
Questions such as how many predictors or observations are we dealing with in this study, the
distribution of some of the continuous variables like trip distance (very important variables to look
at when predicting the tip percentage to be paid), the relationship the trip’s datetime and distance
traveled, meaning when do we seem to see longer trips being made? morning? Or evening hours?

1

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://pypi.org/search/?q=pandas
https://scikit-learn.org/stable/
https://txt.arboreus.com/2013/03/13/pretty-print-tables-in-python.html

[2]: url = "https://s3.amazonaws.com/nyc-tlc/trip+data/green_tripdata_2018-12.csv"
data = pd.read_csv(url)
data.to_csv(url.split('/')[-1])

Print the size of the dataset
print("Number of rows:", data.shape[0]) # Number of rows
print("Number of columns:", data.shape[1]) # Number of columns

create backup dataset
backup_data = data.copy()

Number of rows: 685373
Number of columns: 19

[33]: # define the figure with 2 subplots
fig,ax = plt.subplots(1,2,figsize=(15,4))

Distribution of trip distance as a histogram plot
data.trip_distance.hist(bins=30,ax=ax[0])
ax[0].set_xlabel('Trip Distance (miles)')
ax[0].set_ylabel('Count')
ax[0].set_yscale('log')
ax[0].set_title('Histogram of Trip Distance with outliers included')

define trip distance as a vector v
v = data.trip_distance
exclude any data located further than 3 standard deviation away from the mean
v[~((v-v.median()).abs()>3*v.std())].hist(bins=30,ax=ax[1])
ax[1].set_xlabel('Trip Distance (miles)')
ax[1].set_ylabel('Count')
ax[1].set_title('Histogram of Trip Distance without outliers')

apply a lognormal fit using the mean of trip distance as the scale parameter
scatter,loc,mean = lognorm.fit(data.trip_distance.values,

scale=data.trip_distance.mean(),
loc=0)

pdf_fitted = lognorm.pdf(np.arange(0,12,0.1), scatter,loc,mean)
ax[1].plot(np.arange(0,12,0.1),400000*pdf_fitted,'r')
ax[1].legend(['data','lognormal fit'])

export the figure
plt.savefig('Question2.jpeg', format='jpeg')
plt.show()

2

To the right, outliers have been removed and the trip distance variable is asymmetrically distributed
(shows right skewness), meaning the median is greater than the mean. The trip distance traveled
cannot be negative. To the left, the histogram depicts the entire raw data for trip distance which
includes outliers. Outliers were defined as any point located 3 standard deviations away from the
mean.

Below, I will convert pick up and dropoff times to their right format then plot some useful visual-
izations to study the relationship between the distance traveled and time of day.

[4]: # convert pickup and dropoff features into the right format
data['Pickup_dt'] = data.lpep_pickup_datetime.apply(lambda x:dt.datetime.
↪→strptime(x,"%Y-%m-%d %H:%M:%S"))

data['Dropoff_dt'] = data.lpep_dropoff_datetime.apply(lambda x:dt.datetime.
↪→strptime(x,"%Y-%m-%d %H:%M:%S"))

creating a variable for pickup hours
data['Pickup_hour'] = data.Pickup_dt.apply(lambda x:x.hour)

Mean and Median of trip distance by pickup hour
An intuitive table along with a visualization plot will be constructed below

fig,ax = plt.subplots(1,1,figsize=(9,5)) # prepare fig to plot mean and median␣
↪→values

use a pivot table to aggregate trip distance by pickup hour
table_pivot = data.pivot_table(index='Pickup_hour', values='trip_distance',

aggfunc=('mean','median')).reset_index()
renaming columns
table_pivot.columns = ['Hour','Mean_distance','Median_distance']
table_pivot[['Mean_distance','Median_distance']].plot(ax=ax)
plt.xlabel("Hour of Day")
plt.ylabel('Distance (miles)')
plt.title('Distribution of Trip Distance by pickup hour')
defining x-axis limits
plt.xlim([0,23])
plt.savefig('Question3_1.jpeg', format='jpeg')

3

plt.show()
printing table with tabulate and plotting time series graph
print('-----Trip distance by hour of the day-----\n')
print(tabulate(table_pivot.values.tolist(),["Hour","Mean distance","Median␣
↪→distance"]))

-----Trip distance by hour of the day-----

Hour Mean distance Median distance
------ --------------- -----------------

0 2.86262 1.84
1 2.80991 1.78
2 2.96341 1.84
3 3.29851 2.02
4 3.98302 2.41
5 5.73226 3.68
6 6.36733 4.14
7 4.62449 2.82
8 3.9326 2.34
9 3.86883 2.3
10 3.82598 2.21
11 3.7578 2.18
12 3.7853 2.19
13 3.63649 2.09
14 3.56566 2.04

4

15 3.4641 1.98
16 3.53948 1.94
17 3.18084 1.81
18 2.85526 1.7
19 2.79707 1.67
20 2.88172 1.72
21 2.91834 1.78
22 2.97302 1.86
23 2.9019 1.83

From the plot or table, we observe a mean/median increase in miles traveled early in the mornings
throughout the month of December 2018. This could mean many customers are rushing to work
during those times.The same trend is not seen in evening hours maybe because not all customers
get off work at the same time (5 pm being standard).

Let’s explore trips to/from both JFK and Newark (NJ) airports next

As the variable dictionary defines it, there were two airports: JFK (represented by the dummy
variable “2”) and Newark (represented by the dummy variable “3”). The below chunk looks at the
number of trips made to/from both airports, the mean fare amount charged, and the average total
amount (before tips) charged to customers.

[5]: # select airport trips
airport_trips = data[(data.RatecodeID == 2) | (data.RatecodeID == 3)]
print("Number of trips to/from both airports: ", airport_trips.shape[0])
print("Average fare (calculated by meter) of trips to/from both airports: $",

round(airport_trips.fare_amount.mean(),2),"per trip")
print("Average total amount charged (before tip) to/from both airports: $",

round(airport_trips.total_amount.mean(), 2),"per trip")

Number of trips to/from both airports: 1525
Average fare (calculated by meter) of trips to/from both airports: $ 51.2 per
trip
Average total amount charged (before tip) to/from both airports: $ 63.42 per
trip

The fare amount is not the same as the total amount charged maybe because the meter only takes
into account the distance traveled and not the time spent on the road. Next, I will visualize the
distribution of distance traveled to/from both airports in relation to time of day.

[6]: # creating vector to contain trip distance
t = airport_trips.trip_distance # airport trips
z = data.loc[~data.index.isin(t.index),'trip_distance'] # non-airport trips

Getting rid of outliers in both vectors
I will exclude any points located 3 standard deviations away from the mean
t = t[~((t-t.mean()).abs()>3*t.std())]
z = z[~((z-z.mean()).abs()>3*z.std())]

defining bins boundaries

5

https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_green.pdf

bins = np.histogram(t,normed=True)[1]
h2 = np.histogram(t,bins=bins,normed=True)
h3 = np.histogram(z,bins=bins,normed=True)

plot distributions of trip distance normalized among groups
fig,ax = plt.subplots(1,2,figsize=(15,4))
g = .4*(bins[1]-bins[0])
ax[0].bar(bins[:-1],h2[0],alpha=1,width=g,color='g')
ax[0].bar(bins[:-1]+g,h3[0],alpha=1,width=g,color='b')
ax[0].set_title('A. Trip distance distribution')
ax[0].set_xlabel('Trip Distance (miles)')
ax[0].set_ylabel('Scaled Trip Counts')
ax[0].legend(['Airport trips', 'Non-Airport trips'],loc='best',title='Group')

plot hourly distribution
airport_trips.Pickup_hour.value_counts(normalize=True).sort_index().
↪→plot(ax=ax[1], color='g')

data.loc[~data.index.isin(t.index),'Pickup_hour'].value_counts(normalize=True).
↪→sort_index().plot(ax=ax[1],

␣
↪→ color='b')

ax[1].set_title('B. Hourly Distribution of trips')
ax[1].set_xlabel('Hour of Day')
ax[1].set_ylabel('Scaled Trip Counts')
ax[1].legend(['Airport trips','Non-Airport trips'],loc='best',title='Group')
plt.savefig('Question3_2.jpeg', format='jpeg')
plt.show()

The plot on the left shows scaled trip counts in relation to the trip’s distance. obviously, there
would be multiple non-airport trips as most folks just move around the city and not necessarily
headed for either of the airports. This is explained by the two tall bars at the beginning, where the
non-airport bar (blue) might mean customers were moving around manhattan whereas the airport
trips (green) might mean airport employees, living in the airport proximities, would need the green
taxi to get to/from work OR just usual customers going to/from the airports. We also see a tall

6

Green bar at about 18 miles range, which might represent customers coming from/going to either
airports from/to their homes in manhattan or elsewhere.

The plot on the right shows scaled trip counts in relation to the hour of day. For the airport trips,
we see two peaks, both around 5AM and 3PM, the usual times a customer is required to be at the
airport for checkins whether they are flying in the morning or evening. For the non-airport trips,
there is a bump in trip counts both in the mornings and evenings, meaning customers are going to
work and coming from work respectively.

2 Introduction
The original dataset is comprised of 685373 observartions and 19 variables (both categorical and
continuous). This study follows 4 main sections: Data cleaning, feature engineering, explolatory
data analysis, and finally model building. For model building, both RandomForest and Gradient
Boosting algorithms were optimized and used to predict percentage tip. The decision to use These
models came from analyzing the relationship between predictor variables and response (percentage
tip) variable. The relationship in question was found to be non-linear, so I decided to use models
that do not require there to be any assumptions. Tree-Based methods such as RF and Gradient
Boosting are suitable for this task.

2.1 Data Cleaning
The cleaning process consisted of replacing missing values using appropriate missing value im-
putation techniques such as using the Mean for continuous covariates or Mode for categorical
covariates.

• During this process, I dropped the Ehail_fee variable as it was 100% comprised of missing
values therefore had no variance.

• The two missing values in the trip_type variable were replace by the most occuring value
(mode). Used: data.isnull().sum()

• Invalid data for certain columns:
– Per the variable disctionary, there is not supposed to be a 99 as a dummy value

for RatecodeID, so I replaced the three 99s with the most occuring value. Used:
(data[‘extra’].count_values().sum())

– Extra: 0.09% of transactions were negative. These were replaced by 0 as the most
frequent. Used: (sum(i for i in data.improvement_surcharge if i < 0)

– For continuous variables, if a negative value was found, it was replaced by its absolute
value (assuming a data entry error was made) since transaction amounts cannot be neg-
ative. Additionally, as the minimum total_amount chargeable for any taxi service is 2.5,
every transaction falling below this value was replaced by the median of total_amount
(median=12.18).

[2]: url = "https://s3.amazonaws.com/nyc-tlc/trip+data/green_tripdata_2018-12.csv"
data = pd.read_csv(url)
data.to_csv(url.split('/')[-1])

Print the size of the dataset
print("Number of rows:", data.shape[0]) # Number of rows

7

print("Number of columns:", data.shape[1]) # Number of columns

create backup dataset
backup_data = data.copy()

Number of rows: 685373
Number of columns: 19

[3]: # define a function to clean the dataset

def clean_data(adata):
"""
This function cleans the dataset by removing unncessasary variables,␣

↪→replacing missing values with meaningful
values, getting rid of negative amount values and converting the time␣

↪→variable into its right format.
input:

adata: pandas.dataframe
output:

pandas.dataframe
"""
drop ehail_fee column
if 'ehail_fee' in data.columns:

data.drop('ehail_fee',axis=1,inplace=True)

replace missing values in trip_type with the most frequent value 1
data['trip_type']=data['trip_type'].replace(np.NaN,1)

replace all values that are not allowed as per the variable dictionary␣
↪→with the most frequent allowable value

percentages of negative values per column
print("Negative values found and replaced by their absolute values")
print("total_amount", 100*data[data.total_amount<0].shape[0]/float(data.

↪→shape[0]),"%")
print("tip_amount", 100*data[data.tip_amount<0].shape[0]/float(data.

↪→shape[0]),"%")
print("fare_amount", 100*data[data.fare_amount<0].shape[0]/float(data.

↪→shape[0]),"%")
print("tolls_amount", 100*data[data.tolls_amount<0].shape[0]/float(data.

↪→shape[0]),"%")
print("mta_tax", 100*data[data.mta_tax<0].shape[0]/float(data.shape[0]),"%")
print("improvement_surcharge", 100*data[data.improvement_surcharge<0].

↪→shape[0]/float(data.shape[0]),"%")
remove negative values from the afore metioned continuous variables␣

↪→above
data.total_amount = data.total_amount.abs()

8

data.tip_amount = data.tip_amount.abs()
data.fare_amount = data.fare_amount.abs()
data.tolls_amount = data.tolls_amount.abs()
data.mta_tax = data.mta_tax.abs()
data.improvement_surcharge = data.improvement_surcharge.abs()

Extra
indices_oi = data[~((data.extra==0) | (data.extra==0.5) | (data.extra==1))].

↪→index
data.loc[indices_oi, 'extra'] = 0 # 0 was the mode of this variable
print(round(100*len(indices_oi)/float(data.shape[0]),2),"% of values in␣

↪→extra were invalid and were replaced by the most frequent 0")

RatecodeID
indices_oi = data[~((data.RatecodeID>=1) | (data.RatecodeID<=6))].index
data.loc[indices_oi, 'RatecodeID'] = 1 # 1 was the mode for this variable
print(round(100*len(indices_oi)/float(data.shape[0]),2),"% of values in␣

↪→RatecodeID were invalid and were replaced by the most frequent 1")

total_amount: the minimum charge is 2.5, so I replaced values less than 2.
↪→5 with the median 12.18

indices_oi = data[(data.total_amount<2.5)].index
data.loc[indices_oi,'total_amount'] = 12.18
print(round(100*len(indices_oi)/float(data.shape[0]),2), "% of values in␣

↪→total amount less than 2.5 and were replaced by the median 12.18")

encode categorical to numeric
if data.store_and_fwd_flag.dtype.name != 'int64':

data['store_and_fwd_flag'] = (data.store_and_fwd_flag=='Y')*1

rename time stamp variable and convert to right format
print("renaming variables...")
data.rename(columns={'lpep_pickup_datetime':'Pickup_dt',␣

↪→'lpep_dropoff_datetime':'Dropoff_dt'}, inplace=True)
print("converting timestamps variables to right format...")
data['Pickup_dt'] = data.Pickup_dt.apply(lambda x:dt.datetime.

↪→strptime(x,"%Y-%m-%d %H:%M:%S"))
data['Dropoff_dt'] = data.Dropoff_dt.apply(lambda x:dt.datetime.

↪→strptime(x,"%Y-%m-%d %H:%M:%S"))

print("Done Cleaning")
return data

[4]: # Run code to clean the entire dataset
data = clean_data(data)

Negative values found and replaced by their absolute values

9

total_amount 0.2960431764892985 %
tip_amount 0.002918119038829951 %
fare_amount 0.2960431764892985 %
tolls_amount 0.00014590595194149755 %
mta_tax 0.2865592896131012 %
improvement_surcharge 0.28232801700679777 %
0.17 % of values in extra were invalid and were replaced by the most frequent 0
0.0 % of values in RatecodeID were invalid and were replaced by the most
frequent 1
0.21 % of values in total amount less than 2.5 and were replaced by the median
12.18
renaming variables…
converting timestamps variables to right format…
Done Cleaning

2.2 Feature Engineering
In this section, I intuitively created new variables off of existing ones.

• Time variables: Here time-dependent variables such as week, day_of_month,
day_of_week, hour_of_day, shift_type, trip_duration were created. These vari-
ables could help in determining whether or not a client might be willing to tip depending on
the time the trip took place. For example, customers might be willing to tip on weekends, at
the end of the second and forth weeks which corresponds to when they receive their paychecks,
etc.

• Speed: This variable is the ratio of trip distance to trip duration. Data points (cabs)
surpassing the 240mph threshold were dropped since that is the top speed most cars have.

• With Tip: This is a binary variable indicating whether or not a tip was provided. This
variable would come in handy since no tip was given in the majority (60%) of trips.

• Tip Percentage: This is the response variable, which is calculated by taking the ratio of
the tip_amount to total_amount times 100.

N.B: if we had coordinates of where the trip originated and where it terminated, we could create
two variables that answeres the questions: Was the cab traveling in a vertical direction? Meaning
North to South (Direction_NS)? Or was the cab traveling in a horizontal direction? Meaning East
to West (Direction_EW)?

[5]: # Creating a function for feature engineering described above
def engineer_features(adata):

"""
This function helps create new variables for the dataset in question.␣

↪→Variables include:
. week: int {1,2,3,4,5}, week a transaction was made
. day_of_month: int [0-30], day of month a transaction was made
. day_of_week: int [0-6], day of the week a transaction was made
. hour_of_day: int [0-23], hour of day a transaction was made
. trip_duration: float, time it takes to complete the trip

10

. shift_type: int {1=(7am-3pm), 2=(3pm-11pm), 3=(11pm-7am)}, shift of day a␣
↪→transaction was made

. speed_mph: float, speed of the trip

. with_tip: int {0,1}, 1=transaction with tip, 0=transaction without tip

. Tip_percentage: float, response variable

input:
adata: pandas.dataframe

output:
pandas.dataframe

"""

make a copy of original dataset
data = adata.copy()

create time variables
print("creating time variables...")
ref_week = dt.datetime(2018,12,1).isocalendar()[1] # first week of december␣

↪→2018
data['week'] = data.Pickup_dt.apply(lambda x:x.isocalendar()[1])-ref_week+1
data['day_of_week'] = data.Pickup_dt.apply(lambda x:x.isocalendar()[2])
data['day_of_month'] = data.Pickup_dt.apply(lambda x:x.day)
data['hour_of_day'] = data.Pickup_dt.apply(lambda x:x.hour)

Shift type: 1=(7am to 3pm), 2=(3pm to 11pm), 3=(11pm to 7am)
print("creating shift type...")
data['shift_type'] = np.NAN
data.loc[data[(data.hour_of_day>=7) & (data.hour_of_day<15)].index,␣

↪→'shift_type'] = 1
data.loc[data[(data.hour_of_day>=15) & (data.hour_of_day<23)].index,␣

↪→'shift_type'] = 2
data.loc[data[data.shift_type.isnull()].index, 'shift_type'] = 3

Trip duration
print("Creating trip duration...")
data['trip_duration'] = ((data.Dropoff_dt-data.Pickup_dt).apply(lambda x:x.

↪→total_seconds()/60.))

Speed (in mph)
print("creating speed variable in mph...")
data['speed_mph'] = data.trip_distance/(data.trip_duration/60)
replacing all NAN values and data points greater than 240mph by a value␣

↪→sampled from a random distribution
mean of 12.12mph and standard deviation of 6.9mph. These values were␣

↪→extracted from the normal distribution
indices_oi = data[(data.speed_mph.isnull()) | (data.speed_mph>240)].index

11

data.loc[indices_oi,'speed_mph'] = np.abs(np.random.normal(loc=12.
↪→12,scale=6.9,size=len(indices_oi)))

create tip percentage variable (response variable)
print("creating Tip Percentage...")
data['tip_percentage'] = 100*data.tip_amount/data.total_amount

create with_tip variable
print("creating With Tip variable...")
data['with_tip'] = (data.tip_percentage>0)*1

print("Feature Engineering is Done!!!")

return data

After conducting feature engineering, the speed_mph variable had multiple missing values and I
imputed those missing values by replacing them by values sampled from a random normal distri-
bution. To do this, I first determined the mean and standard deviations of the speed_mph while
ignoring the missing values, then used numpy’s random.normal function to sample random speed
values from a normal distribution (Central Limit Theorem).

• Sample code used for determining mean and std: A = np.array(data[‘speed_mph’]),
np.nanmean(A), np.nanstd(A).

[6]: # run the function to create new features on the dataset
print("size before feature engineering:", data.shape)
data = engineer_features(data)
print("size after feature engineering:", data.shape)

size before feature engineering: (685373, 18)
creating time variables…
creating shift type…
Creating trip duration…
creating speed variable in mph…
creating Tip Percentage…
creating With Tip variable…
Feature Engineering is Done!!!
size after feature engineering: (685373, 27)

[70]: # Uncomment to check for data validity
data.describe() .T

2.3 Exploratory Data Analysis
In this section, I will study the relationship between variables, mainly the distribution of the
response tip_percentage variable and the correlation between continuous predictor variables. Based
on the information deduced in this section, I decided to build the model in two steps:

12

• Create a classification model to predict whether or not a Tip was given using the newly
created variable With_tip.

• Create a regression model for transactions that included Tips.

[11]: # comparison all transactions vs Tippers
split data into two groups
data1 = data[data.tip_percentage>0]
data2 = data[data.tip_percentage==0]

Generate histograms to compare
fig,ax = plt.subplots(1,2,figsize=(15,4))
data.tip_percentage.hist(bins=20,normed=True,ax=ax[0],color='g')
ax[0].set_xlabel('Tip (%)')
ax[0].set_ylabel('Count')
ax[0].set_title('Distribution of Tip (%) - All Transactions')

data1.tip_percentage.hist(bins=20,normed=True,ax=ax[1])
ax[1].set_xlabel('Tip (%)')
ax[1].set_ylabel('Group Count')
ax[1].set_title('Distribution of Tip (%) - Tippers')
plt.savefig('Question4_resp_var.jpeg', format='jpeg')
plt.show()

The plot on the left shows the distribution of Tips for all transactions in this dataset, where the
majority of customers (~60%) did not tip (corresponsing to the larger peak at 0%). But the plot
on the right representing the distribution of Tip Percentage for tippers shows a series of peaks,
corresponding to the popular tipping range of 15%-20%, with the largest peak at 18%.

Below, a set of functions were implimented to explore the relationships between predictor variables
and the response, tip percentage, variable. Two main functions were build, first for the continuous
variable exploration and second for the categorical variables exploration. The categorical variable
functions was set up to generate either a histogram or a boxplot (STILL HAVE TO GET THE HIS-
TOGRAM FUNCTION TO WORK-PROVEN TO TAKE A LOT OF TIME). The third and final
function visually and numerically (by statistical tests) explored the differences between customers

13

who tipped and those who did not.

[11]: # Functions of Exploratory Data Analysis
Continuous Variables
def visualize_continuous(df,label,method={'type':'histogram','bins':
↪→20},outlier='on'):

"""
this funtion quickly visualizes continuous variables
df: pandas.dataframe
label: name of variable to be plotted. One of the columns in dataframe
method: contains the info of the type of plot to be generated (histogram or␣

↪→boxplot)
outlier: ON- to include outliers and OFF- to exclude outliers. Outliers are␣

↪→defined
as any point located 3 standard deviations away from the mean.
"""

create vector of the variable of interest
v = df[label]
define mean and standard deviation
m = v.mean()
s = v.std()
prep the figure
fig,ax = plt.subplots(1,2,figsize=(15,4))
ax[0].set_title('Distribution of '+label)
ax[1].set_title('Tip % by '+label)
if outlier=='off': # remove outliers accordingly and update titles

v = v[(v-m)<=3*s]
ax[0].set_title('Distribution of '+label+' (no outliers)')
ax[1].set_title('Tip % by '+label+' (no outliers)')

if method['type'] == 'histogram': # plot the histogram
v.hist(bins=method['bins'],ax=ax[0])

ax[1].plot(v,df.loc[v.index].tip_percentage,'.',alpha=0.5)
ax[0].set_xlabel(label)
ax[1].set_xlabel(label)
ax[0].set_ylabel('Count')
ax[1].set_ylabel('Tip (%)')

comparing customers who tipped and those who did not
def test_classification(df,label,yl=[0,50]):

"""
This function test if the means of the groups, with_tip and without_tip,␣

↪→are significantly different at 0.05
significance level.
It will also generate a boxplot of the variable by tipping groups

14

label: str, label to test
yl: tuple pr list (default = [0,50]), is the default limit of the y-axis on␣

↪→the boxplot
df: pandas.dataframe (default = data)
"""
check of the variable is categorical with only two categories then run a␣

↪→chi-squared test
if len(pd.unique(df[label]))==2:

vals = pd.unique(df[label])
gp1 = df[df.with_tip==0][label].value_counts().sort_index()
gp2 = df[df.with_tip==1][label].value_counts().sort_index()
print("chi-squared test if", label, "can be used to distinguish␣

↪→transaction with tip and without tip")
print (chisquare(gp1,gp2))

otherwise run the welch's t-test, which does not assume equal population␣
↪→variance

elif len(pd.unique(df[label]))>=10:
df.boxplot(label,by='with_tip')
plt.ylim(yl)
plt.show()
print("t-test if", label, "can be used to distinguish transaction with␣

↪→tip and without tip")
print ("results:",ttest_ind(df[df.with_tip==0][label].values,df[df.

↪→with_tip==1][label].values,equal_var=False))
else:

pass

Categorical variables
def visualize_categories(df,catName,chart_type='histogram',ylimit=[None,None]):

"""
this function helps in visualizing categorical variables.
this functions calls other functions like generate_boxplot and␣

↪→generate_histogram
df: pandas.dataframe
catName: categorical variable in dataset
chart_type: plot of choice to display (histogram or boxplot)
ylimit: tuple or list. Valid if chart_type is a boxplot
"""

defining the categorical function
print(catName)
cats = sorted(pd.unique(df[catName]))
if chart_type == 'boxplot': # generate boxplot

15

generate_boxplot(df,catName,ylimit)
elif chart_type == 'histogram': # generate histogram

generate_histogram(df,catName)
else:

pass

calculate test-statistic
groups = df[[catName,'tip_percentage']].groupby(catName).groups # creating␣

↪→groups
tips = df.tip_percentage
if len(cats)<=2: # if there are only two groups use t-test

print(ttest_ind(tips[groups[cats[0]]],tips[groups[cats[1]]]))
else: # if there are more than 2 groups

prepare the command to evaluate the one-way anova
cmd = "f_oneway("
for cat in cats:

cmd+="tips[groups["+str(cat)+"]],"
cmd=cmd[:-1]+")"
print("one way anova test:", eval(cmd)) # evaluate the command and print

print("Frequency of categories (%):\n",df[catName].
↪→value_counts(normalize=True)*100)

defining boxplot subfunction
def generate_boxplot(df,catName,ylimit):

"""
generate boxplot of tip percentage by categorical variable (catName) with␣

↪→set ylimit
df: pandas.dataframe
catName: str
ylimit: tuple, list
"""
df.boxplot('tip_percentage',by=catName)
plt.title('')
plt.ylabel('Tip (%)')
if ylimit != [None,None]:

plt.ylim(ylimit)
plt.show()

defining histogram subfunction
def generate_histogram(df,catName):

"""
generate histogram of tip percentage by variable "catName" with ylim set to␣

↪→ylimit
df: pandas.Dataframe
catName: str
ylimit: tuple, list

16

"""
cats = sorted(pd.unique(df[catName]))
colors = plt.cm.jet(np.linspace(0,1,len(cats)))
hx = np.array(map(lambda x:round(x,1),np.histogram(df.

↪→tip_percentage,bins=20)[1]))
fig,ax = plt.subplots(1,1,figsize = (15,4))
for i,cat in enumerate(cats):

vals = df[df[catName] == cat].tip_percentage
h = np.histogram(vals,bins=hx)
w = 0.9*(hx[1]-hx[0])/float(len(cats))
plt.bar(hx[:-1]+w*i,h[0],color=colors[i],width=w)

plt.legend(cats)
plt.yscale('log')
plt.title('Distribution of Tip by '+catName)
plt.xlabel('Tip (%)')

For the visualize_continuous function, when exploring the distribution of the fare amount while
excluding outliers, the distribution was found to be right skewed, meaning the mean is lesser than
the median (left plot). On the other hand, when exploring the relationship between fare amount
and tip percentage while excluding outliers, it was found that most customers gave a 20% and below
tip no matter the fare amount payed.

[29]: visualize_continuous(data1,'fare_amount',outlier='off')
test_classification(data,'fare_amount',[0,25])

17

t-test if fare_amount can be used to distinguish transaction with tip and
without tip
results: Ttest_indResult(statistic=79.74026194900446, pvalue=0.0)

For the test_classification function, we reject the null hypothesis and conclude that the two
groups (with tip and without tip) are significantly different at 0.05 significance level. Thus, with
this hypothesis, I have decided the with_tip variable would be a significant contributor to predicting
tip percentage and will therefore be used in building the classification model that predicts whether
or not a tip was given.

Below, a correlation heat map was used to visualize the correlation between continuous variables.
The chunk below provides the construction of the heat map.

[10]: continuous_variables =␣
↪→['total_amount','fare_amount','trip_distance','trip_duration','tolls_amount','speed_mph',

'tip_percentage']
I will use the the dataset for customers who gave tips
cor_mat = data1[continuous_variables].corr()
plt.imshow(cor_mat)
plt.
↪→xticks(range(len(continuous_variables)),continuous_variables,rotation='vertical')

plt.yticks(range(len(continuous_variables)),continuous_variables)
plt.colorbar()
plt.title('Correlation Between Continuous Variables')

18

plt.show()

Some high correlations (above 0.5) were seen between tolls_amount and variables such as to-
tal_amount, fare_amount, and trip_distance and also between speed_mph and variables such as
total_amount, fare_amount, and trip_distance. Highly correlated variables might be excluded
from modeling the response variable, meaning one in any two highly correlated variables will be
eliminated as a predictor of the Tip percentage response variable.

As for categorical variables, the visualize_categories function was used, generating both a his-
togram or boxplot depending on which was more intuitive.

[37]: visualize_categories(data1,'payment_type','boxplot')

payment_type

19

one way anova test: F_onewayResult(statistic=27.652436044986974,
pvalue=9.819499007854318e-13)
Frequency of categories (%):
1 99.991211
3 0.006697
4 0.002093
Name: payment_type, dtype: float64

The plot above compares the medians and range of tip percentage among the different payment
methods used. All three payment methods show to have provided about the same median tip
percentage but with different ranges. For example, the credit card payment method (represented
by 1 and which happens to be the majority of customers-99.99%) shows a narrow range with most
customers automatically giving 18% tip percentage. Also, with a p-value lesser than the 0.05
significance level, I reject the null hypothesis and conclude that the three payment methods are
significantly different.

2.4 Model Building
As mentioned above, two models, a classification and regression, will be built where the classifica-
tion model will be deciding whether or not a tip was given as opposed to the regression model
which will be estimating the tip percentage given if the tip was provided.

[18]:

20

import scikit learn libraries
from sklearn import model_selection, metrics # model optimization and␣
↪→evaluation tools

from sklearn.model_selection import GridSearchCV # performing grid search for␣
↪→tuning parameters in RF and Boosting

defining a function to train and select optimal model using cross validation
def␣
↪→modelfit(alg,dtrain,predictors,response,scoring_method,performCV=True,printFeatureImportance=True,cv_folds=5):
↪→

""""
This function trains the model given as 'alg' by performing␣

↪→cross-validation. It works on both regression
and classification.
alg: sklearn model
dtrain: pandas.DataFrame, training set
predictors: list, labels to be used in the training process.
response: str, the response variable
scoring_method: str, cross-validation method used the evaluate model␣

↪→performance
performCV: bool, perform CV or not
printFeatureImportance: bool, plot histogram of feature importance or not
cv_folds: int, dividing data into K equal sized parts for cross validation
"""

train the algorithm on training data
alg.fit(dtrain[predictors],dtrain[response])
predict on portion of training data
dtrain_predictions = alg.predict(dtrain[predictors])
if scoring_method == 'roc_auc':

dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1]

perform cross-validation
if performCV:

cv_score = model_selection.
↪→cross_val_score(alg,dtrain[predictors],dtrain[response],cv=cv_folds,

scoring=scoring_method)
print model report
print('\nModel report:')
if scoring_method == 'roc_auc':

print('Accuracy (Train):',metrics.accuracy_score(dtrain[response].
↪→values,dtrain_predictions))

print('AUC Score (Train):',metrics.
↪→roc_auc_score(dtrain[response],dtrain_predprob))

if (scoring_method == 'neg_mean_squared_error'):

21

print('MSE (Train):',metrics.mean_squared_error(dtrain[response].
↪→values,dtrain_predictions))

if performCV:
print('CV Score - Mean : %.7g | Std : %.7g | Min : %.7g | Max : %.7g' %␣

↪→(np.mean(cv_score),np.std(cv_score),
␣

↪→np.min(cv_score),np.max(cv_score)))
print feature importance
if printFeatureImportance:

if dir(alg)[0] == '_Booster': # runs if alg is gradient boosting
feat_imp = pd.Series(alg.booster().get_fscore()).

↪→sort_values(ascending=True)
else:

feat_imp = pd.Series(alg.feature_importances_,predictors).
↪→sort_values(ascending=True)

feat_imp.plot(kind='barh',title='Feature Importance')
plt.xlabel('Feature Importance Score')
plt.show()

defining the optimization function that searches for the optimal tuning␣
↪→parameter

def optimize_num_trees(alg,param_test,scoring_method,train,predictors,response):
"""
This function is used to to tune parameters of a predictive algorithm
alg: sklearn model
param_test: dict, parameters to be tuned
scoring_method: str, cross-validation method used the eveluate model␣

↪→performance
train: pandas.Dataframe, training data
predictors: list, labels to be used in the model training process
response: str, response variable
"""
gsearch = GridSearchCV(estimator=alg, param_grid =␣

↪→param_test,scoring=scoring_method,n_jobs=2,iid=False,cv=5)
gsearch.fit(train[predictors],train[response])
return gsearch

defining the functions that plots optimization results
def plot_opt_results(alg):

cv_results = []
for i in range(len(param_test['n_estimators'])):

cv_results.append((alg.grid_scores_[i][1],alg.
↪→grid_scores_[i][0]['n_estimators']))

cv_results = pd.DataFrame(cv_results)
plt.plot(cv_results[1],cv_results[0])

22

plt.xlabel('# of Trees')
plt.ylabel('Score')
plt.title('Optimization Report')

2.4.1 Classification Model

After spending a considerable amount of time on the Exploratory Data Analysis section, I found out
that payment_type was the strongest covariate in determining the with_tip outcome as 99% of
payments were made using a credit card. Therefore, by optimizing the GradientBoostingClassifier
(from scikit learn) model, I was able to obtain an accuracy score of 96%. The GradientBoosting-
Classifier (GBM) model is composed of three tuning parameters: the number of trees, depth of
trees, and the learning rate. The trees in the GBM model are built one at a time (which takes a
long time) and they learn slowly since each new tree helps to correct errors made by the previously
trained tree. A great application of GBM, and the main reason why it’s used in this instance, is
that it works well with highly imbalanced data (we have way more customers who did not tip
compared to those who did).

Worth Noting:

• Sample size of training and optimization was chosen as 100000. This is a small sample
size given the amount of observations we have (~600k) but is representative of the general
population as it was selected randomly.

• ROC-AUC (Area under the curve from the receiver operating characteristic) was used as the
model validation metric

Results:

• optimized number of trees: 110
• optimized variables: payment_type, total_amount, trip_duration, trip_distance, extra,

shift_type, trip_type
• roc-auc on the test dataset (for model performance purposes): 95%

The following code shows the optimization process…

[26]: # For reproducibility
np.random.seed(444)

Optimization and Training of the Classifier
from sklearn.ensemble import GradientBoostingClassifier
print('Optimizing the classifier...')

train = data.copy() # making a copy of the training dataset
since this dataset is comprised of some 600k obs, i will select a small␣
↪→smaple size to carry on model traning

and 5 folds cross validation because training GBM takes longer because trees␣
↪→are built sequentially.

train = train.loc[np.random.choice(train.index,size=100000,replace=False)]

initiate the timing

23

tic = dt.datetime.now()

for predictors, start with the candidates identified during EDA
predictors =␣
↪→['payment_type','total_amount','trip_duration','trip_distance','extra',

'shift_type','trip_type']
set the response variable - it will be used later in the optimization process
response = 'with_tip'

optimize n_estimator through grid search
param_test = {'n_estimators':range(30,150,20)} # define range over which number␣
↪→of trees is to be optimized

initiate the classification model
model_cls = GradientBoostingClassifier(

learning_rate=0.1, # shrinking contribution of each tree
min_samples_split=2, # min number of features required to split␣

↪→at internal node
max_depth=4, # max depth of the individual regression estimator
max_features='auto', # sqrt of number of features used at each␣

↪→split
subsample=0.8, # <1 to decrease variance and increase bias
random_state=10)

get results of the search grid
gs_cls =␣
↪→optimize_num_trees(model_cls,param_test,'roc_auc',train,predictors,response)

print optimization results
print(gs_cls.cv_results_, gs_cls.best_params_, gs_cls.best_score_)

cross validate the best model with optimized number of estimators
modelfit(gs_cls.best_estimator_,train,predictors,response,'roc_auc')

save the best estimator on disk as pickle fpr later use
with open('my_classifier.pkl','wb') as fid:

pickle.dump(gs_cls.best_estimator_,fid)
fid.close()

print('Processing time:', dt.datetime.now()-tic)

Optimizing the classifier…
{'mean_fit_time': array([4.05015192, 8.26531453, 9.82931247, 11.849192 ,
14.65563121,

17.05641742]), 'std_fit_time': array([0.138035 , 1.05407517, 0.87026715,
0.16869979, 0.3223803 ,

24

0.75306036]), 'mean_score_time': array([0.02966003, 0.04435711, 0.0592957
, 0.06815395, 0.07719736,

0.07672887]), 'std_score_time': array([0.00497422, 0.00876943,
0.01868051, 0.01521571, 0.01528263,

0.00675174]), 'param_n_estimators': masked_array(data=[30, 50, 70, 90,
110, 130],

mask=[False, False, False, False, False, False],
fill_value='?',

dtype=object), 'params': [{'n_estimators': 30}, {'n_estimators':
50}, {'n_estimators': 70}, {'n_estimators': 90}, {'n_estimators': 110},
{'n_estimators': 130}], 'split0_test_score': array([0.96303594, 0.98032051,
0.98622877, 0.98981762, 0.99179612,

0.99281244]), 'split1_test_score': array([0.9623612 , 0.97863031,
0.98449464, 0.98838233, 0.99043769,

0.99173671]), 'split2_test_score': array([0.96023954, 0.97871059,
0.98484022, 0.98859876, 0.99039816,

0.99174158]), 'split3_test_score': array([0.96248392, 0.97935139,
0.98597158, 0.989478 , 0.99139134,

0.99266034]), 'split4_test_score': array([0.95825364, 0.97869801,
0.98558785, 0.98909322, 0.99095904,

0.99170165]), 'mean_test_score': array([0.96127485, 0.97914216,
0.98542461, 0.98907399, 0.99099647,

0.99213054]), 'std_test_score': array([0.00178566, 0.00064464,
0.00066013, 0.00053307, 0.00054166,

0.00049719]), 'rank_test_score': array([6, 5, 4, 3, 2, 1], dtype=int32)}
{'n_estimators': 130} 0.9921305430500199

Model report:
Accuracy (Train): 0.96379
AUC Score (Train): 0.9935144004629777
CV Score - Mean : 0.9921305 | Std : 0.0004971946 | Min : 0.9917016 | Max :
0.9928124

25

Processing time: 0:04:46.385850

The bar chart above represents the variable importance for this Gradient Boosting model. We
see the mean decrease in Gini index for each variable, relative to the largest. The first three
variables with the largest mean decrease in Gini index and therefore the most important variables
are payment type, trip duration, and total amount. The output shows that the optimum
number of trees is 110.

Let’s now test the model’s performance on a data it has never seen (test dataset) and get the
resulting ROC-AUC:

[28]: # For reproducibility
np.random.seed(444)

testing on a different dataset
indices = data.index[~data.index.isin(train.index)]
test = data.loc[np.random.choice(indices,size=100000,replace=False)]

ypred = gs_cls.best_estimator_.predict(test[predictors])

print('ROC-AUC:', metrics.roc_auc_score(test.with_tip, ypred))

ROC-AUC: 0.9565148389626892

26

2.4.2 Regression Model

Using a similar pipeline of optimization as in the classification model, a RandomForest (RF) model
was constructed. RF model train each tree independently, using a random sample of the data.
This randomness helps the model become more robust than a single decision tree, and less likely
to overfit on training data. RF is easier to tune compared to GBM in that RF has only two tuning
parameters, the number of trees and the number of features to be selected at each node.

Worth Noting:

• Sample size of training and optimization was chosen as 100000. This is a small sample
size given the amount of observations we have (~600k) but is representative of the general
population as it was selected randomly.

• The Mean Squared Error (MSE) was used as the model validation metric

Results:

• optimized number of trees: 150
• optimized variables: total_amount, trip_duration, speed_mph
• MSE on the test dataset (for model performance purposes): 11

The following code shows the optimization process…

[41]: # For reproducibility
np.random.seed(444)

importing the necessary libraries
from sklearn.ensemble import RandomForestRegressor

splitting the dataset into train and test sets
train = data1.copy()
train = train.loc[np.random.choice(train.index,size=100000,replace=False)]
indices = data1.index[~data1.index.isin(train.index)]
test = data1.loc[np.random.choice(indices,size=100000,replace=False)]

train['ID'] = train.index
IDCol = 'ID'
set the response variable
response = 'tip_percentage'

set the predictor variables
predictors = ['VendorID', 'passenger_count', 'trip_distance', 'total_amount',

'extra', 'mta_tax', 'tolls_amount', 'payment_type',
'hour_of_day', 'Week', 'day_of_week', 'day_of_month',␣

↪→'shift_type',
'trip_duration', 'speed_mph']

predictors = ['trip_distance','tolls_amount', 'trip_duration', 'speed_mph']
predictors = ['total_amount', 'trip_duration', 'speed_mph']

optimizing the randomForest

27

initiating the time
tic = dt.datetime.now()

optimize n_estimator through grid search
param_test = {'n_estimators':range(50,200,25)} # define range over which number␣
↪→of trees is to be optimized

initiate classification model
rf_model = RandomForestRegressor(min_samples_split=2, max_depth=5,␣
↪→max_features='auto',random_state=10)

rf_model = RandomForestRegressor()#n_estimators=100)

get results of the grid search
gs_rfmodel =␣
↪→optimize_num_trees(rf_model,param_test,'neg_mean_squared_error',train,predictors,response)

print optimization results
print(gs_rfmodel.cv_results_, gs_rfmodel.best_params_, gs_rfmodel.best_score_)

cross validate the best model with optimized number of estimators
modelfit(gs_rfmodel.
↪→best_estimator_,train,predictors,response,'neg_mean_squared_error')

save the best estimator on disk as pickle for a later use
with open('my_rfmodel_reg2.pkl','wb') as fid:

pickle.dump(gs_rfmodel.best_estimator_,fid)
fid.close()

ypred = gs_rfmodel.best_estimator_.predict(test[predictors])

print("Test mse:", metrics.mean_squared_error(test.tip_percentage, ypred,␣
↪→squared=True))

print("R-Squared:", metrics.r2_score(test.tip_percentage, ypred))
print("Processing Time:", dt.datetime.now()-tic)

{'mean_fit_time': array([15.712328 , 24.09029193, 29.95902987, 37.683952 ,
47.01904492,

50.90412889]), 'std_fit_time': array([0.29632341, 1.20583362, 0.11495963,
0.60923467, 0.70497772,

1.70664519]), 'mean_score_time': array([0.64321299, 0.76511884,
0.77114811, 1.06276541, 1.23756204,

1.38002958]), 'std_score_time': array([0.18362978, 0.17034938,
0.14844895, 0.14706724, 0.16750085,

0.32113457]), 'param_n_estimators': masked_array(data=[50, 75, 100, 125,
150, 175],

mask=[False, False, False, False, False, False],

28

fill_value='?',
dtype=object), 'params': [{'n_estimators': 50}, {'n_estimators':

75}, {'n_estimators': 100}, {'n_estimators': 125}, {'n_estimators': 150},
{'n_estimators': 175}], 'split0_test_score': array([-11.76590417, -11.64560154,
-11.53780813, -11.67106168,

-11.57708017, -11.61527871]), 'split1_test_score': array([-10.09641003,
-10.03406382, -9.94688588, -9.86885573,

-9.9219073 , -9.92012721]), 'split2_test_score': array([-11.60120345,
-11.72575859, -11.67235909, -11.52663876,

-11.46799554, -11.58945797]), 'split3_test_score': array([-13.15816063,
-13.20420977, -13.11084337, -13.08608008,

-13.04328865, -13.06517837]), 'split4_test_score': array([-13.12747461,
-13.05684413, -13.00406482, -13.13560521,

-13.0352799 , -12.92681049]), 'mean_test_score': array([-11.94983058,
-11.93329557, -11.85439226, -11.85764829,

-11.80911031, -11.82337055]), 'std_test_score': array([1.13467568,
1.1498265 , 1.15519337, 1.20348629, 1.1626195 ,

1.13842162]), 'rank_test_score': array([6, 5, 3, 4, 1, 2], dtype=int32)}
{'n_estimators': 150} -11.809110310049606

Model report:
MSE (Train): 1.6998499909813263
CV Score - Mean : -11.81096 | Std : 1.174324 | Min : -13.06462 | Max : -9.857749

29

Test mse: 11.03347790656623
R-Squared: 0.5780028494167173
Processing Time: 0:14:13.232475

The bar chart above represents the variable importance in this RandomForest model. We see the
mean decrease in Gini index for each variable, relative to the largest. The variable with the largest
mean decrease in Gini index and therefore the most important variable is total amount. The
output shows that the optimum number of trees is 150.

2.4.3 Final Model

For this final model, we will combine the classification and regression models built above for a final
percentage tip prediction. The resulting mean squared error was….

Worth Noting: * Get transaction to predict * Classify transaction if a tip was provided or not * If
the transaction resulted in the tip being provided, then predict the percentage tip given, otherwise
return zero

[42]: # define the final model
def predict_tip(transaction):

"""
This function predicts the percentage tip expected by the driver if a tip␣

↪→is provided.
Transaction: pandas.dataframe
"""
define most important variables as per models built above
cls_predictors =␣

↪→['payment_type','total_amount','trip_duration','speed_mph','mta_tax',
'extra','hour_of_day']

reg_predictors = ['total_amount','trip_duration','speed_mph']

classify transactions
clas = gs_cls.best_estimator_.predict(transaction[cls_predictors])

predict tip percentage for those transactions classified as 1
return clas*gs_rfmodel.best_estimator_.predict(transaction[reg_predictors])

Using the function above, I will make predictions on a sample of a 100k transactions.

[43]: test = data.loc[np.random.choice(data.index,size = 100000,replace = False)]

using the function built above to predict tip
ypred = predict_tip(test)

print("final mean squared error:", metrics.mean_squared_error(test.
↪→tip_percentage, ypred))

print("final r2_score:", metrics.r2_score(test.tip_percentage, ypred))

final mean squared error: 102.6468355949954
final r2_score: -0.457224084241189

30

Let’s now plot the residuals to see if they meet the normally-distributed assumption for regression
models

[41]: df = test.copy() # make a copy of the data
df['predictions'] = ypred # add predictions column
calculating residuals
df['residuals'] = df.tip_percentage - df.predictions

plot histogram to check for normality
df.residuals.hist(bins = 20)
plt.yscale('log')
plt.xlabel('observed - predicted')
plt.ylabel('Count')
plt.title('Residual Plot')
plt.show()

The residuals looks normally distributed, implying that valid inferences are made by this model
and that the normality assumption made is also confirmed.

3 Conclusion
In this project, a 2018 green taxi dataset was used, machine learning tools utilised to predict
percentage tip a green taxi driver would expect for a single ride. The project followed four main
sections: Data Cleaning, Feature Engineering, Exploratory Data Analysis, and Model Building. A

31

cross-validated Gradient Boosting classifier was built to predict the binary response of whether or
not a tip was provided and 96% accuracy and AUC was achieved. A cross-validated RandomForest
regressor then predicted the percentage tip if the tip was provided (MSE: 11). Both models were
then combined to predict the percentage tip.

Overall, from these observations made through model building, we see that in deciding whether or
not to tip, payment type had the greatest influence. Passengers paying with credit cards were most
likely to tip. After deciding that they would be tipping, the total amount/cost of the trip had the
greatest impact on the tip percentage.

[]:

32

	NYC Green Taxi
	Warm Up Questions

	Introduction
	Data Cleaning
	Feature Engineering
	Exploratory Data Analysis
	Model Building
	Classification Model
	Regression Model
	Final Model

	Conclusion

